
WTAGRAPH: Web Tracking and Advertising
Detection using Graph Neural Networks

Zhiju Yang
Colorado School of Mines

Weiping Pei
Colorado School of Mines

Monchu Chen
Appen

Chuan Yue
Colorado School of Mines

Abstract—Web tracking and advertising (WTA) nowadays are
ubiquitously performed on the web, continuously compromising
users’ privacy. Existing defense solutions, such as widely deployed
blocking tools based on filter lists and alternative machine
learning based solutions proposed in prior research, have limi-
tations in terms of accuracy and effectiveness. In this work, we
propose WTAGRAPH, a web tracking and advertising detection
framework based on Graph Neural Networks (GNNs). We first
construct an attributed homogenous multi-graph (AHMG) that
represents HTTP network traffic, and formulate web tracking
and advertising detection as a task of GNN-based edge repre-
sentation learning and classification in AHMG. We then design
four components in WTAGRAPH so that it can (1) collect HTTP
network traffic, DOM, and JavaScript data, (2) construct AHMG
and extract corresponding edge and node features, (3) build a
GNN model for edge representation learning and WTA detection
in the transductive learning setting, and (4) use a pre-trained
GNN model for WTA detection in the inductive learning setting.
We evaluate WTAGRAPH on a dataset collected from Alexa
Top 10K websites, and show that WTAGRAPH can effectively
detect WTA requests in both transductive and inductive learning
settings. Manual verification results indicate that WTAGRAPH
can detect new WTA requests that are missed by filter lists
and recognize non-WTA requests that are mistakenly labeled by
filter lists. Our ablation analysis, evasion evaluation, and real-
time evaluation show that WTAGRAPH can have a competitive
performance with flexible deployment options in practice.

Index Terms—web tracking and advertising, privacy, graph
neural networks

I. INTRODUCTION

Web tracking and advertising (WTA) are ubiquitously per-
formed by trackers to collect web users’ browsing activities
for various purposes such as personalized advertisements and
behavioral analytics [1]–[5], during which user privacy has
often been compromised. To protect users, a basic approach is
to detect and act when WTA are about to take place. Currently,
a widely deployed solution is to use blocking tools such as
AdBlock Plus [6] and uBlock Origin [7]. These tools can
detect and block WTA requests based on filter lists (such as
EasyList [8] and EasyPrivacy [9]) that define a set of rules for
determining whether an HTTP (or HTTPS) request is WTA-
related (i.e., related to either tracking or advertising, or both).
However, the maintenance of these manually-curated filter lists
often requires a significant amount of human effort, and prior
research has also shown that filter lists have shortcomings such
as incurring false-positive and false-negative errors [10], [11].

Therefore, researchers have proposed machine learning
based solutions to better detect WTA requests especially with

fewer false negatives. By extracting features from HTTP
traffic and request URLs [12], [13], various machine learn-
ing classifiers have been developed to detect WTA-related
requests. Similarly, by using syntactic and semantic features of
JavaScript code [14]–[16], researchers have shown the effec-
tiveness of different machine learning classifiers on detecting
WTA-related JavaScript requests. Recently, Iqbal et al. [17]
presented AdGraph, a state-of-the-art approach for WTA de-
tection. However, though each of these prior efforts made
important contributions, opportunities exist for researchers to
further improve the performance of the machine learning based
approach for WTA detection.

In this paper, we propose WTAGRAPH, a web tracking
and advertising detection framework based on Graph Neural
Networks (GNNs). There has been a surge of success in
applying GNNs for addressing problems with graph-structured
data in recent years [18]–[21]. Typical GNNs adopt the neigh-
borhood aggregation strategy (i.e., message passing), where
the representation of each node is iteratively learned by com-
bining its feature vector and feature vectors aggregated from
its neighbors. In practice, many GNN variants have achieved
state-of-the-art performance because GNNs can utilize both
explicit features of nodes and implicit features learned from
the graph for learning better node representations. By nature,
HTTP network traffic, where WTA requests are included,
can be structured as a graph, in which an edge represents
a specific HTTP request and a node represents either the
source domain that issues an HTTP request or the destination
domain that an HTTP request is sent to. Motivated by the
fact that HTTP network traffic can be represented by a graph
and GNNs are successful in graph learning tasks, we construct
an attributed homogenous multi-graph (AHMG) to represent
HTTP network traffic, and formulate WTA detection as a task
of GNN-based edge representation learning and classification
in AHMG. To effectively perform this task, we propose
WTAGRAPH and address a few technical challenges including
AHMG construction, attribute assignment, edge representation
formulation, and message passing.

We designed and implemented four components in WTA-
GRAPH so that it can (1) collect HTTP network traffic,
DOM, and JavaScript data, (2) construct AHMG and extract
corresponding edge and node features, (3) build a GNN model
for edge representation learning and WTA detection in the
transductive learning setting, and (4) use a pre-trained GNN
model for WTA detection in the inductive learning setting.

1

We evaluated WTAGRAPH on a dataset collected from
Alexa Top 10K websites, and showed that WTAGRAPH can
effectively detect WTA requests in both transductive and in-
ductive learning settings. For example, it detects WTA requests
with 97.90% accuracy, 98.38% precision, 96.25% recall, and
97.30% F1 score in the transductive learning setting; it de-
tects WTA requests with 97.82% accuracy, 98.00% precision,
96.38% recall, and 97.18% F1 score in the inductive learning
setting. Manual verification results indicate that WTAGRAPH
can detect new WTA requests that are missed by filter lists and
recognize non-WTA requests that are mistakenly labeled by
filter lists. Our ablation analysis, evasion evaluation, and real-
time evaluation show that WTAGRAPH can have a competitive
performance with flexible deployment options in practice.

Overall, our paper makes the following major contributions:
(1) we proposed a novel GNN-based approach for WTA
detection, (2) we developed a GNN that directly learns edge
representation in AHMG, (3) we designed and implemented
an edge representation aggregation strategy in our GNN, (4)
we implemented WTAGRAPH that integrates data collection,
graph construction, GNN training, and WTA detection into a
single framework, and (5) we performed large scale evalua-
tions and showed that WTAGRAPH is effective and useful in
both transductive and inductive learning settings.

The rest of this paper is structured as follows. Section II
reviews the related work on WTA detection and Graph Neural
Networks. Section III gives the formal definition of our
AHMG and formulates our task of WTA detection. Section IV
describes the design and implementation of WTAGRAPH.
Section V describes our data collection process and dataset.
Section VI and Section VII present the evaluation results
of WTAGRAPH in transductive and inductive settings, re-
spectively. Section VIII discusses the use of WTAGRAPH,
limitations, and future work. Section IX concludes this work.

II. RELATED WORK

Our work is closely related to WTA detection and GNNs.
WTA Detection. Web tracking and advertising compromise
users’ privacy by associating their identities with their brows-
ing activities on different websites. Based on manually-curated
filter lists that define a set of rules, blocking tools have
been widely deployed to detect WTA requests. However, prior
research has shown the shortcomings of this solution regarding
maintenance effort, false-positive errors, and false-negative
errors [10], [11].

Therefore, researchers have proposed machine learning
based solutions to better detect WTA requests. Gugelmann
et al. [12] introduced a machine learning based method for
classifying WTA requests. Based on a set of HTTP traffic
features, the authors trained a classifier that can identify WTA
requests with the precision and recall at around 84%. Similarly,
Shuba et al. [13] proposed the NoMoAds framework for
ad-blocking on the mobile environment. It extracts features
from HTTP traffic and trains a decision tree model to detect
WTA requests. Bhagavatula et al. [22] developed a k-nearest
neighbors classifier that can detect WTA requests using 91

URL features. By using syntactic and semantic features of
JavaScript code, Ikram et al. [14] proposed a one-class classi-
fier that can detect WTA-related JavaScript programs. Wu et
al. [15] and Kaizer et al. [16] introduced similar classifiers that
detect WTA-related JavaScript requests using code behaviors
(e.g., API and cookie access). Our approach differs from these
solutions significantly because we build a GNN model to better
identify WTA requests by utilizing both explicit and implicit
features learned from AHMG.

Recently, Iqbal et al. [17] proposed a graph-based frame-
work, named AdGraph, for WTA detection. By instrumenting
the Chromium browser, AdGraph first records DOM changes
caused by responsible parties (such as some JavaScript code
and HTTP request) during a webpage visit. Using the recorded
DOM changes, it then builds a graph that captures the context
of HTTP requests (e.g., DOM manipulation and JavaScript
behavior). Lastly, it extracts 64 features from the context
graph for an HTTP request and trains a random forest
model to classify WTA requests with 95.33% accuracy, 89.1%
precision, and 86.6% recall [17]. Note that building upon
AdGraph, the PageGraph [23] component of the Brave browser
is under development. By more comprehensively attributing
DOM events, PageGraph can perform various tasks such as
filter list generation and web compatibility analysis [23].

Our approach also differs from this work significantly in
two aspects. First, we construct attributed homogenous multi-
graph (AHMG) to represent HTTP network traffic of a set
of requests, while AdGraph builds a graph to represent the
context of HTTP requests for a single webpage visit. Second,
we develop a GNN model to learn edge representations and
detect WTA requests, while AdGraph trains a traditional
random forest model based on explicitly extracted features
to detect WTA requests. We provide a detailed experimental
comparison between AdGraph and our work in Section VII-B.
Graph Neural Networks. Graphs are widely used to represent
real-world objects and relationships in various domains such
as social networks, knowledge graphs, traffic networks, and
molecular structures. GNNs are one type of neural network
that can directly operate on graphs for performing different
learning tasks. A successful category of GNNs in recent years
are convolutional GNNs [18]–[20], [24], [25]. Inspired by
the success of convolutional neural networks (CNNs) [26],
these GNNs achieve graph convolution operations by adopting
the neighborhood aggregation strategy (i.e., message passing),
where the representation of each node is iteratively learned by
combining its feature vector and feature vectors aggregated
from its neighbors. In practice, many GNN variants have
achieved state-of-the-art performance for tasks in different
domains such as point clouds classification and action recog-
nition in computer vision [27]–[29], recommendation and
spam detection in social networks [30]–[32], and molecular
fingerprints and drug discovery in chemistry [24], [33], [34].

Motivated by the fact that HTTP network traffic can be
represented by a graph and GNNs are successful in graph
learning tasks, we in this work formulate WTA detection as a
task of edge classification in an HTTP network traffic graph.

2

Especially, we design a specific GNN model that directly
learns edge representation for performing this task.

III. PROBLEM DEFINITION

Our task of WTA detection is to detect whether some
HTTP requests issued from a website are for the tracking
and/or advertising purpose. Intuitively, one can build a graph
to represent HTTP network traffic of one or more websites,
in which an edge represents a specific HTTP request and a
node represents either the source domain that issues an HTTP
request or the destination domain that an HTTP request is
sent to. We can hence consider our task of WTA detection as
predicting the labels (i.e., WTA vs. non-WTA) of edges in the
graph. In this section, we first introduce the definition of the
attributed homogenous multi-graph that we aim to explore in
this work. We then formally define WTA detection as a task
of edge classification on such a graph.

Attributed Homogenous Multi-Graph. An attributed
homogenous multi-graph (AHMG) is defined as a directed
graph G = (V,E,X,Xe), where each node v ∈ V has a
feature vector xv ∈ X , and each edge e(u,v,i) ∈ E has a
feature vector xe(u,v,i) ∈ Xe. Since multiple edges directed
from node u to node v are permitted in G, we use index i to
indicate the ith edge among those multiple edges. In addition,
self-loop (i.e., an edge directed from a node to the node itself)
is also permitted in G.

www.a.com

img.b.com

tk.b.net

e.com tv.d.org

s1.cdn.c.com

ht
tp
s:
//w

w
w.
a.
co
m
/m
y.c

ss

http
://tk

.b.n
et/t
1.js

http://tk.b.net/t1.js

http
://tk

.b.n
et/x

hr

https://
img.b.c

om/1.im
g

ht
tp
s:/
/tk
.b
.n
et
/u
id

http://tv.d.org/show

htt
p:/
/s1
.cd
n.c
.co
m/
cli
p1

http://s1.cdn.c.com/img1

ht
tp
s:/
/im
g.
b.
co
m
/g
if

Fig. 1: An example of the attributed homogenous multi-graph
constructed from HTTP network traffic.

AHMG is a natural representation of the HTTP network
traffic on the web. Figure 1 provides an example. Each node
represents a fully qualified domain name (FQDN) [35], while
an edge represents a specific HTTP request issued from the
source FQDN to the destination FQDN. Consistent with the
characteristics of HTTP network traffic on the web, multiple
edges exist between two FQDNs (e.g., e.com and tk.b.net)
and they represent different HTTP requests, while self-loops
(e.g., http://tv.d.org/show) also commonly exist in an AHMG.
Besides, the properties of FQDNs and HTTP requests can
be considered naturally as attributes of nodes and edges,
respectively.

AHMG Edge Representation Learning and Classifica-
tion. With the definition above, we can formally define our
task of WTA detection as an AHMG edge representation
learning and classification problem. Given an AHMG G =
(V,E,X,Xe), the goal is to design a model fω : xe →
Rd (d � |xe|) that learns the d-dimensional representation
of each edge e(u,v,i) in G. The learned edge representation

can be utilized in different tasks, such as edge clustering and
edge classification. Specifically, our task in this work is to
classify edges as WTA or non-WTA in an AHMG built from
HTTP network traffic using the learned edge representations.

IV. DESIGN

In this section, we first present the high-level architecture
of our WTA detection framework WTAGRAPH. We then
elaborate on the design rationale and implementation of its
four components.

A. High-level Architecture of WTAGRAPH

After we formulated our problem as a task of edge represen-
tation learning and classification in an AHMG, we identified
the following three challenges in our task.

• How to extract and assign representative attributes for
nodes and edges in an AHMG? As explained in Figure 1,
domain names and URLs are naturally attributes of nodes
and edges. To achieve better learning and classification
performance, it is crucial to effectively convert them into
feature vectors and identify other representative features.

• How to design and build a GNN model that directly
learns edge representations in an AHMG? There is no
existing GNNs, to the best of our knowledge, for direct
edge representation learning in an AHGM. It is therefore
necessary to design a new GNN model that can learn
edge representations in our graph.

• How to effectively aggregate and propagate edge repre-
sentations in that GNN? The success of GNNs in other
applications suggests that an effective aggregation and
propagation strategy will be essential for our GNN.

Therefore, we propose WTAGRAPH to address these chal-
lenges and perform our task of WTA detection. Specifically,
WTAGRAPH is designed for two usage settings: transductive
learning setting and inductive learning setting. In the trans-
ductive learning setting, WTAGRAPH is expected to detect
WTA requests in the testing part of all observed data. That is,
the edges in a given AHMG are split into training and testing
datasets; WTAGRAPH is trained, during which the labels of
edges in the training dataset and the whole structure of AHMG
are observed, to infer edge labels in the testing dataset. In
this setting, our GNN goes through both the forward pass and
back-propagation for model training as well as for inferring
unlabeled edges in the testing dataset. In practice, this usage
setting corresponds to the application scenarios in which a
batch of HTTP requests of multiple websites or webpages are
added for prediction (i.e., their labels are unknown or uncer-
tain); they belong to the testing dataset and are added to the
existing AHMG (with labeled edges) to form a new AHMG for
an entire transductive training/retraining and inferring process.
For example, one can leverage WTAGRAPH’s predictions in
the transductive learning setting to help improve filter lists.

In the inductive learning setting, WTAGRAPH is expected
to detect WTA requests that have never been seen during
the training process. That is, WTAGRAPH pre-trained (in the
transductive learning setting above) on a pre-built AHMG

3

Build AHMG from HTTP traffic

Extract nodes and edges features

node [0, 0.1, 2, ..., -3, 0.1]

edge [1, -3, 0.4, ..., 0.1, 2]

Extract new nodes
and edges features

Connect to pre-built graph
New node New edge

Inductive
Learning Setting

Non-WTA

WTA

C
1:

 D
at

a
C

ol
le

ct
or

C4: Edge Classifier
C

3:
 W

TA
-G

N
N

Transductive
Learning Setting

 Output the pre-trained model

The pre-trained model learns
representations of new edges

Edge classification

HTTP
Traffic

JavaScript

DOM

Visit input URLs using
Chrome and
extension, and
collect three types of
data for each visit

C
2:

 G
ra

ph
 B

ui
ld

er

node [1, 0.3, 0, ..., -1, 0.9]

edge [0.1, -0.5, 0, ..., 0.1, 0]

R
eL

u

Graph conv. layer

...

R
eL

u

Graph conv. layer

...

an unlabeled specific edge
neighbor edges for aggregation
src/dst node for aggregation

WTA

Edge classification
Non-WTA

Fig. 2: The high-level architecture of our WTAGRAPH framework.

will be used to predict new or unseen edges by simply
going through the forward pass. In practice, this usage setting
corresponds to the application scenarios in which a pre-trained
model is utilized to immediately predict new HTTP requests.
In more details, the requests encountered in each webpage
visit will immediately form a new testing AHMG, which will
be connected (i.e., extended) for just one hop to the pre-
built AHMG mentioned above if they share some nodes; this
extended yet still much smaller testing AHMG will be the
input to the pre-trained WtaGraph, and will simply go through
the forward pass for edge representation learning and inference
in real-time.

As shown in Figure 2, we design four components in
WTAGRAPH for WTA detection in both transductive and
inductive learning settings. The data collector component uses
a Google Chrome browser extension to collect HTTP network
traffic, document object model (DOM), and JavaScript API
access for each webpage visit. The graph builder component
builds an AHMG from the collected HTTP network traffic
and extracts the corresponding node and edge features to
address the first challenge. The WTA-GNN component is a
novel GNN model for edge representation learning and WTA
detection in the transductive learning setting. It captures the
local graph structure, neighbor nodes’ features, and neighbor
edges’ features for learning each edge representation. In our
design of WTA-GNN we address the last two challenges. The
edge classifier component uses a pre-trained WTA-GNN for
WTA detection in the inductive learning setting.

B. Data Collector

The data collector component is designed to record the
HTTP traffic (including all the redirected requests as in [17],
[36]–[38]), DOM, and JavaScript API access for each webpage

visit. The collected data can be then leveraged to build an
AHMG and to extract the features of its of nodes and edges.
We implemented the core functions of this data collector in
a Google Chrome browser extension. In the data collection
process, this extension can be installed in Google Chrome that
is automated by Selenium [39] to crawl a list of websites.

In more details, we implemented the browser extension with
the following capabilities. First, it can intercept and record all
HTTP traffic during a webpage visit using Google Chrome’s
webRequest API. Second, it can automatically scroll down a
webpage to load dynamic content (if any). Third, it can save
the page source at the end of the visit so that DOM-related
features can be extracted. Fourth, it can monitor JavaScript
API access by instrumenting popular APIs that can be used
for tracking and/or advertising. Lastly, it can save all crawled
data to a NoSQL database on a server for later analysis.

C. Graph Builder

The graph builder component is designed to construct an
AHMG from data crawled by the data collector and extract
node and edge features of AHMG.
Graph Construction. In the transductive learning setting, the
graph builder constructs an AHMG as exemplified in Figure 1
by converting all intercepted HTTP requests as edges and
corresponding source and destination FQDNs of those requests
as nodes. This AHMG is typically large, containing requests
collected from many (e.g., thousands as in our experiments)
websites. In the inductive learning setting, the graph builder
converts the newly collected HTTP traffic of a single webpage
visit into a new testing AHMG as described in Section IV-A.
Depending on the existence of shared nodes between a new
testing AHMG and the pre-built AHMG, three possible types
of edges are added to the new testing AHMG. First, in the

4

case that both source and destination FQDNs exist as nodes
in the pre-built AHMG, we add a new edge between the two
nodes to represent a new HTTP request. Second, in the case
that only one of two FQDNs exists as a node in the pre-built
AHMG, we add a node representing the missing FQDN and
a new edge between the two nodes. Third, in the case that
both source and destination FQDNs do not exist in the pre-
built AHMG, we add two nodes representing the two missing
FQDNs and a new edge between them.

As one can imagine, isolated subgraphs could exist in an
AHMG. For example, x.com may only send requests to y.com
and there is no request between them and other FQDNs,
thus creating an isolated subgraph that represents the unique
traffic between these two FQDNs. Note that isolated subgraphs
are not obstacles to the design and implementation of our
WTA-GNN because typical GNNs can handle such cases
(Section IV-D).
Feature Extraction. After an AHMG is constructed in either
learning setting, the graph builder extracts two and three
categories of features for nodes and edges, respectively.

The first node feature category is character embeddings. As
explained in Section III, the FQDN strings can be considered
naturally as attributes of nodes. Hence, a straightforward way
to represent an FQDN as an input to our WTA-GNN is to use
one-hot encoding. Each character in the FQDN string will be
represented by a vector of bits (e.g., 26 bits if we only encode
the lowercase alphabet), among which a 1-bit indicates the
presence of a specific character. A representation of an FQDN,
therefore, can be a big vector of concatenated one-hot vectors
especially if the FQDN contains dozens of characters and if
more characters (e.g., uppercase and special characters) need
to be encoded.

Therefore, we decide to use the character embeddings
yielded by the character CNN embedding model [40]. After
training over one billion words [41], the character CNN model
produces an embedding for each of 256 characters in the
vocabulary. The embedding size of each character is 16. For
example, the character ‘a’ is represented by the following
vector of 16 real numbers:

[1.1014, -0.6760, 0.6962, ..., 1.0212]

In more details, we first set the length of an FQDN to
30 characters. FQDNs longer than 30 characters would be
truncated from the 31st character, and FQDNs shorter than 30
characters would be padded with a <PAD> token to length
30. We then concatenate all character embedding vectors
following the character order in the FQDN. Note that for the
<PAD> token, we fill its embedding vector with 16 zeros.
Using this method, an FQDN string is represented by a feature
vector of size 480.

The second node feature category is DOM. The DOM
feature of a node is a vector of bits representing the presence
of HTML tags in the DOM. This feature could help identify
WTA requests because many WTA-related domains may not
have DOM data (e.g., no DOM is available for an endpoint
domain that only accepts POST requests). Note that for those

FQDNs that have no DOM information collected, we fill the
feature vector with all zeros.

The first edge feature category is also character embed-
dings. We truncate or pad a request URL to 200 characters,
and concatenate each character embedding vector following
the character order in the request URL. This brings each edge
with a feature vector of size 3,200 that represents characters in
the URL. Note that while an FQDN string is more related to a
node, a request URL is more specific to an edge in our AHMG.
Hence, we consider the corresponding character embeddings
of a request URL as edge features.

The second edge feature category is JavaScript API access.
The JavaScript feature of an edge is a vector of bits repre-
senting the access to instrumented APIs by the script received
from a JavaScript file request. The features in this category
could help distinguish between functional and WTA-related
JavaScript because WTA-related JavaScript is known for ac-
cessing certain APIs to perform tracking and/or advertising
[1], [42]. In addition, we consider the presences of async and
defer attributes in the script HTML tag of a JavaScript
file request as two binary features. The high information gain
of these two features has been evaluated and confirmed by
authors in [17]. For non-JavaScript requests, we fill their
JavaScript feature vectors with all zeros.

The third edge feature category is request statistics. For a
request, we extract the following informative attributes: source
frame, order, timing, type, method, HTTP cookies, and URL
length. These attributes could also help characterize a WTA
request. For example, a WTA request usually carries data in its
URL (e.g., in the query section), which makes its URL length
often longer than that of a non-WTA request. These attributes
can be extracted from the saved HTTP traffic. Specifically, by
using the chrome.webRequest API [43] in our data collector
extension, we can extract the details of each HTTP request.
For example, given an HTTP request, the source frame feature
is a bit that indicates whether the request happens in the
main frame or not, and can be extracted from the frameId
property; the order feature is an integer derived by checking
the current request’s index in a sequence of requests ordered
by the timeStamp property. This ends up with a feature
vector of size 34 for an edge.

D. WTA-GNN

Given a constructed AHMG and its node and edge features,
our task is to predict whether an edge (representing a specific
HTTP request) is WTA-related.
Design Choices, Decision, and Justification. To perform this
task, there are at least four potential solutions. First, one can
train a traditional machine learning classifier, such as a random
forest classifier, to predict labels of edges. Second, one can
build a traditional neural network, e.g., a multilayer perceptron
(MLP), to classify edges by learning their representations.
Third, following the typical link prediction (i.e., predicting
the possible presence of an edge between two nodes) approach
[44], [45], one can build a GNN model to learn node represen-
tations, and predict the label of each edge using the derived

5

edge representation (e.g., by concatenating or averaging the
corresponding source and destination node representations).
Fourth, one can build an end-to-end GNN model that directly
learns edge representations and predicts their labels.

However, there are some shortcomings in the first three
solutions. In either the first or the second solution, mainly
the edge features are used for the prediction. Either solution
would miss the opportunity to leverage features of neighbor
nodes and latent graph structural features that could intuitively
contribute to better classification performance. The third so-
lution is also inappropriate for solving our problem, even
though it leverages GNN to explore both the node and graph
structural features. Typical link prediction GNNs are built to
process simple graphs, while our graph is a multi-graph. As a
consequence, multiple edges between the same pair of nodes
in our graph will have the same edge representation if we
derive their representations simply from node representations.
This will lead to inaccurate classification results. We evaluate
and compare these three solutions in Section VI-A.

Therefore, we set out to explore the fourth solution to
perform our task. We build a specific GNN model that directly
learns edge representations by incorporating edge features,
node features, and latent graph structural features. Our model,
referred to as WTA-GNN, can be used in both transductive
and inductive learning settings.
WTA-GNN Design. Typical GNNs (e.g., GCN [18], GAT
[20], and GraphSage [19]) learn node representations in a
homogenous simple graph by incorporating neighbor node
features and graph structural features for tasks such as node
classification, node clustering, and link prediction. To the best
of our knowledge, no study has been conducted specifically for
edge representation learning on AHMG. Therefore, inspired by
the design of typical GNNs, we design WTA-GNN for edge
representation learning on our AHMG.

The node representation learning process of a typical GNN
can be boiled down to the following two steps. First, it
aggregates neighbor nodes’ representations for each node. Sec-
ond, it propagates each node’s representation by incorporating
its representation and the aggregated representations. Various
GNN studies have demonstrated that such an aggregation
and propagation process can yield better performance on
graph-related tasks. We hypothesize that a similar aggregation
and propagation process could be directly applied for edge
representation learning to help achieve a good performance
on our task of WTA detection in an AHMG.

Hence, we design the edge representation learning process
in our WTA-GNN as follows. First, it aggregates neighbor
edges’ representations for each edge. Specifically, we consider
the incoming edges of the same destination node as a given
edge’s neighbors for aggregation. The intuition behind this
design is that HTTP requests sent to the same FQDN likely
have the same purpose especially from the WTA vs. non-WTA
perspective. Hence such an aggregation could help propagate
and learn an edge representation for accurate classification.
Second, it incorporates the representations of two nodes of
each edge. The intuition behind this design is that node

representations could further encode graph structural infor-
mation and help classify an edge. Third, similar to the node
representation learning, it propagates each edge representation
by incorporating its representation and aggregated edge and
node representations through multiple layers of computation.

Algorithm 1: WTA-GNN edge representation learning
Input: AHMG G = (V,E,X,Xe); node feature

vector xv ∈ X; edge feature vector
xe(u,v,i) ∈ X

e; # of layers L; node weight
matrix WV ; edge weight matrix WE ; activation
function σ; neighborhood function N ;
aggregation function Agg

Output: edge representations ze(u,v,i)
,∀e(u,v,i) ∈ E

1 h0e(u,v,i)
← xe(u,v,i),∀e(u,v,i) ∈ E

2 s0v ← xv,∀v ∈ V
3 for l = 1...L do
4 for v ∈ V do
5 slN(v) ← Agg

(
sl−1
u ,∀u ∈ N(v)

)
6 slv ← σ

(
W l

V ·
(
sl−1
v + slN(v)

))
7 end
8 for e(u,v,i) ∈ E do
9 hlN(e(u,v,i))

← Agg
(
hl−1
j ,∀j ∈ N(e(u,v,i))

)
10 tl ← Average

(
slu, s

l
v

)
11 hle(u,v,i)

←
σ
(
W l

E · Concat
(
hl−1
e(u,v,i)

+ hlN(e(u,v,i))
, tl

))
12 end
13 end
14 ze(u,v,i)

← hLe(u,v,i)
,∀e(u,v,i) ∈ E

Algorithm 1 details the edge representation learning process
in WTA-GNN. It takes as input an AHMG G = (V,E,X,Xe)
and the learnable weight matrices WV and WE , and outputs
a d-dimensional edge representation ze(u,v,i)

for each edge.
In more details, L defines the number of layers in the neural
network and l in the outer loop denotes a specific layer. Note
that the base case l = 0 defines the initial input layer, where
features extracted by the graph builder component are provided
to WTA-GNN (Lines 1 and 2). In each layer l, WTA-GNN
first learns node representations in the first inner loop (Lines
4 to 7), and then learns edge representations in the second
inner loop (Lines 8 to 12). In the first inner loop, each node
representation slv is produced by applying an activation func-
tion to the weighted sum of neighbor nodes’ representations
(aggregated in Line 5) and its own representation from layer
l − 1. In the second inner loop, WTA-GNN first aggregates
neighbor edges’ representations into a single vector hlN(e(u,v,i))

(Line 9), then combines the representations of the edge’s two
nodes into a vector tl by averaging slu and slv (Line 10), and
lastly produces edge representation hle(u,v,i)

by applying an
activation function to the weighted concatenated representation
vector (Line 11). Specifically, WTA-GNN concatenates the
combined vector tl (which represents a partial edge represen-
tation inherited merely from the two nodes) and the sum of

6

an edge representation hl−1
e(u,v,i)

and the aggregated neighbor
edges’ representation hlN(e(u,v,i))

.
As shown in Figure 2, WTA-GNN is trained in the transduc-

tive learning setting, where edges in the input AHMG are split
into the training set and testing set. During the training process,
we apply the cross-entropy loss function to the output repre-
sentation ze(u,v,i)

for edges in the training set, and tune the
weight matrices WV and WE via stochastic gradient descent.
Cross-entropy loss is popularly used in GNNs (such as [18],
[20]) for classification tasks. In our case, it measures the
distance between raw (i.e., without normalization) edge clas-
sification logits and ground truth labels. The training process
minimizes the average cross-entropy loss across all training
edges. The trained WTA-GNN can output representations of
edges in the testing set and predict their labels. Furthermore,
the trained WTA-GNN can be used in the inductive learning
setting to immediately predict the labels of new edges in a
testing AHMG constructed for each webpage visit.
WTA-GNN Implementation. We implement WTA-GNN to
have two layers (i.e., L=2) using the GNN framework
in DGL [46]. Furthermore, we implement the aggrega-
tion function Agg as a mean aggregator, which takes the
elementwise mean of vectors in

{
sl−1
u ,∀u ∈ N(v)

}
and{

hl−1
j ,∀j ∈ N(e(u,v,i))

}
in Lines 5 and 9, respectively. We

implement the neighborhood function N to select the complete
set of neighbors of a node or edge. In fact, one can choose dif-
ferent aggregation and neighborhood functions in Algorithm 1.
For example, one might implement the neighborhood function
N to only select a subset of neighbors such as in [19]. Note
that for edges or nodes that have no neighbors (e.g., in an
isolated subgraph that only has one edge or even one node),
neighbor selection and aggregation will not happen; hence the
corresponding edge or node representation is purely learned
from its own initial features.

E. Edge Classifier

The last component of WTAGRAPH is the edge classifier.
It loads the WTA-GNN model pre-trained in the transductive
learning setting to predict the labels of new edges in a testing
AHMG. Specifically, it classifies a new edge as WTA or non-
WTA based on the WTA-GNN output ze(u,v,i)

. The vector
ze(u,v,i)

in Algorithm 1 is of size two in our design, which
corresponds to two possible classes (i.e., WTA and non-WTA)
of an edge. The edge classifier takes the class that has the
larger logit value as the classification result of an edge.

V. DATA COLLECTION AND DATASET

Data Collection. As explained in Section IV-B, we imple-
mented the data collector component of WTAGRAPH as a
Google Chrome browser extension. In our data collection,
we installed the data collector in the instrumented Chromium
browser [47] of AdGraph [17]. In this way, two separate
data collection operations can be performed during the same
webpage visit with no interference to each other. We selected
the top 10K websites from the Alexa top one million list
dated on June 8th, 2020 for data collection. For each website,

we automatically visited its homepage using the instrumented
Chromium browser installed with WTAGRAPH’s data collector
from July 23rd, 2020 to August 6th, 2020. In each webpage
visit, we waited for the homepage to finish loading and
scrolling (triggered by WTAGRAPH’s data collector) or at most
120 seconds. The instrumented Chromium browser collected
webpage execution context data, while WTAGRAPH’s data
collector saved the HTTP traffic, DOM, and JavaScript API
access information.
Ground Truth. To train and evaluate WTAGRAPH, we created
the ground truth labels of all collected HTTP requests by
leveraging the same seven filter lists1 as used in AdGraph
[17]. Specifically, they are EasyList [8], EasyPrivacy [9], Anti-
Adblock Killer [48], Warning Removal List [49], Blockzilla
[50], Peter Lowes’s List [51], and Fanboy Annoyances List
[52]. We did not cover the Squid Blacklist used in [17] as
it was no longer available at that time. Note that filter lists
could have false positives and false negatives as studied in
[10], [11], but using their outputs as ground truth labels for
model training and quantitative evaluation is still reasonable
and viable especially for Top 10K websites as analyzed in [17].
We have manual verification on a set of sampled classification
results as detailed in Section VI-B and Appendix A. For each
collected HTTP request, we labeled it as WTA or non-WTA
based on whether it would be blocked by any of these seven
filter lists.
Dataset Statistics. Table I summarizes the statistics of HTTP
requests collected by WTAGRAPH’s data collector and by
AdGraph’s Chromium browser [47] from Alexa Top 10K
websites in the same visits. There are over 1.55 million
and 834K requests collected by WTAGRAPH and AdGraph,
respectively; using the same seven filter lists, 39% and 15%
of these requests collected by WTAGRAPH and AdGraph are
labeled as WTA requests, respectively. From the perspective
of WTAGRAPH, it missed around 15% of requests collected
by AdGraph. From the perspective of AdGraph, it missed
over 952K (61%) of requests collected by WTAGRAPH, and
over half of those missed requests are WTA requests. We
investigated this data discrepancy and found that WTAGRAPH
collected data correctly, while AdGraph mistakenly collected
some URLs that are not HTTP requests in practice and simply
missed some types of HTTP requests due to the potential
incompleteness of its Chromium instrumentation. More details
about this discrepancy analysis are in Appendix B.

We refer to the dataset (in the first column of Table I) col-
lected by WTAGRAPH’s data collector as our Top-10K dataset.
This dataset will be used in Section VI and Section VII. The
overlapped data (in the third column of Table I) between our
Top-10K dataset and the dataset collected by AdGraph during
the same webpage visits will be used in Section VII-B for
comparing WTAGRAPH with AdGraph.

VI. EVALUATION IN TRANSDUCTIVE SETTINGS

In this section, we present the performance of WTAGRAPH
on detecting WTA requests in transductive learning settings.

1All of them are dated on June 8th, 2020.

7

Table I: Statistics of HTTP requests collected by WTAGRAPH and by AdGraph from Alexa Top 10K websites.
WTAGRAPH Collected AdGraph Collected Overlapped Between Them Missed By AdGraph

Targeted
Websites # Requests # (%) Blocked

by Filter Lists # Requests # (%) Blocked
by Filter Lists # Requests # (%) Blocked

by Filter Lists # Requests # (%) Blocked
by Filter Lists

Top-10K 1,559,602 614,001 (39%) 834,439 129,004 (15%) 607,124 117,884 (19%) 952,478 496,117 (52%)

We describe its overall performance, perform manual verifica-
tion, and provide the results of ablation studies on WTAGRAPH
variants. Recall that transductive learning settings correspond
to the application scenarios in which a batch of HTTP requests
of multiple websites or webpages are added for prediction as
described in Section IV-A.

A. Overall Performance

Baseline Models. Section IV-D introduced three other poten-
tial solutions besides WTAGRAPH to our problem of WTA
detection. We implemented two of them, a typical link pre-
diction GNN model and a traditional multilayer perceptron
(MLP), as baseline models for comparison with WTAGRAPH.
Note that we present the comparison between a traditional
machine learning classifier (i.e., a random forest model used
in AdGraph [17]) and WTAGRAPH in Section VII-B.

For the link prediction GNN model, we implemented a two-
layer GCN [18] model that learns node representations and
generates edge representations by averaging the learned node
representations of each edge’s two nodes. For the MLP, we
implemented it with one hidden layer; it takes as input the raw
request features (i.e., both node and edge features extracted by
WTAGRAPH) and outputs the learned feature vector of size
two for each request. Besides, we proposed and implemented
an advanced link prediction GNN as a baseline model. It is
similar to WTA-GNN but does not aggregate neighbor edges’
representations during the learning process. We detailed the
experimental setup in Appendix C. We evaluated these three
baseline models and WTAGRAPH on our Top-10K dataset
through the stratified 10-fold cross-validation.
Overall Results. Table II summarizes the performance of
these four models on our Top-10K dataset, in terms of clas-
sification accuracy, precision, recall, and F1 score. Overall,
WTAGRAPH outperformed all three baseline models on ev-
ery evaluation metric. For example, the detection accuracy,
precision, recall, and F1 score of WTAGRAPH are 97.90%,
98.38%, 96.25%, and 97.30%, respectively. The ROC and
AUC analysis of these four models is in Appendix D.

Table II: Summary of the models’ performance for WTA
detection on our Top-10K dataset.

Model Acc. Prec. Recall F1

Link Pred. GNN 94.20% 93.63% 91.48% 92.54%
MLP 94.89% 94.57% 92.33% 93.44%
Adv. Link Pred. 97.63% 97.90% 96.03% 96.96%
WTAGRAPH (i.e., WTA-GNN) 97.90% 98.38% 96.25% 97.30%

There are two major implications from these results. On
the one hand, our proposed WTAGRAPH and advanced link
prediction model outperform the rest two baseline models.
This implies that benefiting from the neighbor aggregation and
implicit graph features, a purposefully designed GNN model
can outperform typical models in terms of detecting WTA

requests. On the other hand, by comparing the aggregation
strategy in WTAGRAPH (i.e., aggregating from both nodes and
edges) to that in our advanced link prediction GNN (i.e., only
aggregating from nodes), we found that the former results in
a better detection performance.
Detailed Performance. Table III summarizes the detailed
detection performance of WTAGRAPH on 12 types of HTTP
requests in our Top-10K dataset. The HTTP requests collected
by WTAGRAPH covered all 12 request types as documented
for Google Chrome [53]. As shown on the left side of Table III,
the number of WTA requests detected by WTAGRAPH is very
close to that by filter lists for each request type. Overall,
38.52% and 39.37% of all requests are detected as WTA by
WTAGRAPH and filter lists, respectively. This result implies
that WTAGRAPH can be an alternative to filter lists because
of its proximate detection rate on WTA requests. Meanwhile,
WTAGRAPH has a remarkable performance on the majority
of request types. For example, WTAGRAPH achieves over
95% accuracy, precision, recall, and F1 score for the top four
request types (i.e., image, script, xmlhttprequest,
and other accounting for 86.34% of all requests in the
dataset). WTAGRAPH has the relatively worse performance on
detecting main_frame, stylesheet, and font requests.
For example, the false negative rates for these three types of
requests are 69.50%, 16.20%, and 10.41%, respectively.

B. Manual Verification

To verify WTAGRAPH’s predictions, we conducted a set of
manual verifications on sampled requests. Specifically, from
all predictions of 12 request types, we randomly sampled 846
false positives, 941 false negatives, 1,040 true positives, and
1,139 true negatives; we manually assigned each of them a
label of WTA, non-WTA, mixed (only used for script resources
as in [17]), or undecidable after verification. Due to the space
limitation, we detailed the complete verification procedure,
criteria, and results in Appendix A.

Overall, from 846 sampled false positives, we found
that WTAGRAPH is able to identify WTA requests that
are missed by filter lists, especially for types of image,
script, xmlhttprequest, sub_frame, ping,
and media. Specifically, 320 out of 846 requests are
verified as WTA requests, which means WTAGRAPH’s
classification is correct. For example, while filter lists missed,
WTAGRAPH successfully detected the following tracking pixel
https://ss0.baidu.com/6ONWsjip0QIZ8tyhnq/
ps_default.gif. From 941 sampled false negatives, we
verified that WTAGRAPH’s classification (i.e., a non-WTA
prediction) is indeed correct over 90% of the time for
stylesheet, main_frame, other, and font requests.
That is, filter lists mistakenly labeled those requests as WTA.
For example, Peter Lowes’s List [51] aggressively blocks

8

Table III: The detailed WTA detection performance of WTAGRAPH on 12 types of HTTP requests in the Top-10K dataset.
Request Type # Requests # Blocked by

Filter Lists
Detected by
WTAGRAPH

Accuracy Precision Recall F1 FNR FPR

image 700,670 240,176 232,539 98.43% 99.28% 96.12% 97.68% 3.88% 0.36%
script 364,787 208,697 205,169 96.51% 97.76% 96.11% 96.93% 3.89% 2.94%
xmlhttprequest 151,755 86,432 85,409 96.54% 97.52% 96.37% 96.94% 3.63% 3.24%
other 129,289 5,534 5,323 99.76% 99.06% 95.28% 97.14% 4.72% 0.04%
stylesheet 63,971 5,044 4,407 98.44% 95.92% 83.80% 89.45% 16.20% 0.31%
sub frame 63,383 50,999 51,037 97.42% 98.36% 98.44% 98.40% 1.56% 6.75%
font 42,386 1,210 1,112 99.64% 97.48% 89.59% 93.37% 10.41% 0.07%
main frame 23,554 200 130 99.12% 46.92% 30.50% 36.97% 69.50% 0.30%
ping 15,560 14,594 14,462 97.71% 99.23% 98.33% 98.77% 1.67% 11.59%
media 3,945 1,027 1,087 96.86% 91.54% 96.88% 94.13% 3.12% 3.15%
csp report 263 88 86 93.92% 91.86% 89.77% 90.80% 10.23% 4.00%
object 39 0 0 100% - - - - 0.00%
Total 1,559,602 614,001 600,761 97.90% 98.38% 96.25% 97.30% 3.75% 1.03%

any request to criteo.com; as a consequence, when one
visits criteo.com as a first-party website, all requests to
criteo.com, including the main_frame request, will be
blocked by this filter list.

From 1,040 sampled true positives and 1,139 sampled true
negatives, we observed that the majority (89.67%) of the
agreements between WTAGRAPH and filter lists are correct,
while they both could be incorrect on around 5% requests
(excluding undecidable ones) likely due to the imperfection
and incompleteness of filter lists. For example, both WTA-
GRAPH and filter lists did not detect the following tracking
pixel https://c.evidon.com/a/4.gif.

C. Ablation Analysis

To figure out how different categories of features and
neighbor aggregation strategies impact on WTAGRAPH’s per-
formance, we conducted ablation studies on four WTAGRAPH
variants: (1) variant without node aggregation, (2) variant
without edge URL embedding features, (3) variant without
edge JavaScript features, and (4) variant without edge URL
statistical features. Note that the variant of WTAGRAPH
without neighbor edge aggregation (i.e., the advanced link
prediction GNN) has been evaluated and reported in Table II.

Figure 3 presents the performance of these four variants
and the original WTAGRAPH. Overall, the performance of
four WTAGRAPH variants is slightly worse than that of the
original WTAGRAPH. Specifically, without node aggregation,
WTAGRAPH’s classification accuracy, precision, recall, and F1

score drop 0.72%, 0.95%, 0.89%, and 0.91%, respectively;
without edge URL embedding features, its accuracy, preci-
sion, recall, and F1 score drop 0.59%, 0.71%, 0.81%, and
0.76%, respectively; without edge URL statistical or JavaScript
features, WTAGRAPH’s classification performance declines
slightly with around 0.10%.

These results imply that: (1) WTAGRAPH’s performance is
contributed by all features and aggregation strategies rather
than certain dominating factors; (2) WTAGRAPH is flexible in
terms of deployment options in practice, for example, one can
remove certain features if there are constraints of feature avail-
ability or computational resource, and expect WTAGRAPH to
still have a competitive performance; (3) WTAGRAPH can be
robust against some WTA detection evasions, such as DGA
domains [54] and JavaScript obfuscation [55], because it does
not heavily rely on certain specific features.

Accuracy Precision Recall F1 Score
95

96

97

98

99

100

P
er

ce
n

ta
ge

Original WtaGraph

W/o JavaScript Features

W/o Statistical Features

W/o URL Embedding Features

W/o Node Aggregation

Fig. 3: The performance of WTAGRAPH variants with different
categories of features or aggregation strategies ablated.

VII. EVALUATION IN INDUCTIVE SETTINGS

In this section, we evaluate WTAGRAPH in different induc-
tive learning settings. We first present its overall performance.
Then, we conduct a detailed comparison between WTAGRAPH
and AdGraph [17]. Third, we perform evasion studies to
evaluate the robustness of WTAGRAPH. Lastly, we evaluate the
real-time performance of WTAGRAPH. Recall that inductive
learning settings correspond to the application scenarios in
which a pre-trained model is utilized to immediately predict
new HTTP requests (encountered in each webpage visit) that
form a new testing AHMG as described in Section IV-A.

A. Overall Performance

All the evaluations in the previous section are performed
on a full graph in transductive learning settings. To evaluate
WTAGRAPH’s performance in inductive learning settings, we
first transductively trained four WTAGRAPH models on dif-
ferent graphs that are built from randomly selected websites.
Specifically, we randomly selected 1K, 3K, 5K, and 7K
websites from our Top-10K dataset for transductive training
and used each of the remaining (unseen) 9K, 7K, 5K, and
3K websites for inductive testing on their homepages. We
built four graphs referred to as the Random-1K, Random-
3K, Random-5K, and Random-7K2 graphs, and pre-trained
four WTAGRAPH models on these graphs, respectively. We
then tested these four pre-trained WTAGRAPH models on the
corresponding remaining websites. In more details, we built
a testing AHMG for each individual testing webpage and

2For a common data split (80% for training and 20% for testing) and fair
comparison with AdGraph in the next subsection, this Random-7K graph
indeed contains 7,224 instead of 7,000 websites.

9

extended it with one-hop neighbors of its nodes and edges in
the corresponding pre-built AHMG (Section IV-A). We used
the corresponding pre-trained model to predict WTA requests
in each testing AHMG.

It is worth highlighting that our testing AHMG construction
approach is both reasonable and effective. In inductive learning
settings, the input to a pre-trained model for prediction or
testing must be an AHMG. Though one can build a testing
AHMG that contains only one edge representing an individual
request in a webpage visit, WTAGRAPH will perform poorly
(as we initially observed) because such an AHMG cannot well
leverage implicit graph features and neighbor information.
Constructing a testing AHMG for multiple requests of each
webpage visit will enable rich feature extraction from both
the content and context perspectives; meanwhile, by taking
this approach, there is no need or dependency on visiting more
webpages or websites. In other words, this is how we address
in our WTA detection task the so-called cold-start problem or
challenge (i.e., feasibly and properly constructing test graphs)
that is common in the inductive learning of GNNs [56], [57].
Note that while AdGraph constructs a totally different graph,
its graph construction and feature extraction are also based on
multiple requests of a webpage visit; thus, the same input unit
(i.e., information collected from each webpage visit) will be
provided to WTAGRAPH and AdGraph for a fair comparison.

Table IV: The statistics of training graphs and testing websites
in each inductive learning setting. Note that the full graph of
this Top-10K dataset has 54,109 nodes and 1,559,602 edges.

Four Training Graphs Testing Graphs (i.e., Sites)
Sites # Nodes # Edges # Sites # Edges
Random-1K 8,296 149,771 8,982 1,409,831
Random-3K 20,931 482,722 6,982 1,076,880
Random-5K 30,811 787,107 4,982 772,495
Random-7K 44,246 1,234,148 2,758 325,454

Table IV summarizes the statistics of our dataset split in
each inductive setting. Taking the Random-1K graph as an
example, it only contains 9.60% edges and 15.33% nodes that
appeared in the Top-10K dataset. In this inductive learning
setting, the WTAGRAPH model trained on the Random-1K
graph will be used to infer labels of over 1.4 million requests
of 8,982 websites that have never been seen during the training
process. Note that a testing AHMG will be created for each
of these 8,982 websites and will be independently tested to
infer the labels of its edges. On average, each testing AHMG
has 27 nodes and 129 edges.

Figure 4 presents the performance of WTAGRAPH models
in four inductive learning settings. The blue bars, plotted for
the comparison purpose, represent the performance of the
WTAGRAPH in the transductive learning setting as shown in
Table II. We observed that except for the WTAGRAPH model
trained on the Random-1K graph, the rest WTAGRAPH models
can achieve competitive performance in inductive learning set-
tings, comparing with the performance of WTAGRAPH in the
transductive learning setting. For example, the WTAGRAPH
model on the Random-7K graph can predict the 325,454
requests of 2,758 testing websites with an accuracy 97.82%,

Accuracy Precision Recall F1 Score
88

89

90

91

92

93

94

95

96

97

98

99

100

P
er

ce
n

ta
ge

Transductive WtaGraph

WtaGraph of Random-7K

WtaGraph of Random-5K

WtaGraph of Random-3K

WtaGraph of Random-1K

Fig. 4: The performance of WTAGRAPH models (trained on
the Random-1K, Random-3K, Random-5K, and Random-7K
graphs) in inductive learning settings.

precision 98.00%, recall 96.38%, and F1 score 97.18%. Be-
sides, we found that the larger the training graph, the better
the performance in the inductive learning setting. This is as
expected because a larger graph will likely capture more
HTTP traffic patterns and include representative edges for
aggregation. These results imply that WTAGRAPH is able to
perform well in inductive learning settings when the training
dataset is not too small. The ROC and AUC analysis for the
models in this and next subsections is in Appendix D.

B. Comparison with AdGraph

AdGraph [17] only collected 38.93% (i.e., 607,124) of
requests in our Top-10K dataset (summarized in Table I),
and does not directly work on our Top-10K dataset because
the context information for the requests missed by AdGraph
is not available. To feasibly compare our WTAGRAPH with
AdGraph, we evaluated their performance on these 607,124
overlapped requests in our Top-10K dataset.

As shown at the top of Table V, we randomly selected
80% websites (i.e., 7,224 of 9,032 overlapped websites) for
training and 20% websites for testing. We also divided 1,808
testing websites into two categories: connected and isolated
websites. A website is considered as connected if there exists
at least one node in its AHMG also appearing in the training
graph; otherwise, it is considered as isolated. In other words,
the AHMG of a connected website has at least one edge
connecting to the training graph. There are 1,714 connected
and 94 isolated websites in total. Note that isolated websites
barely exist (three isolated websites in total) in our Top-
10K dataset3 as WTAGRAPH collects the complete requests of
visited websites and it is more likely for websites to connect
with each other based on the common requests.

We trained the WTAGRAPH model and the random forest
model in AdGraph using the same training data, and reported
their classification performance on the same testing data in
Table V. On the one hand, we found that WTAGRAPH outper-
forms AdGraph in terms of classification accuracy, precision,
recall, and F1 score by 1.46%, 4.05%, 3.99%, and 4.02%,
respectively, on predicting the requests of the 1,808 testing

3Which differs from the overlapped dataset. Isolated websites also barely
exist in our two other datasets (not included in this paper): zero in the random
10K and three in the bottom 10K of the Alexa top one million site list.

10

Table V: The data split and performance of WTAGRAPH and AdGraph in inductive learning settings on the overlapped dataset.
Training Testing

Overall Case: Connected Case: Isolated
479,313 requests of 7,224 websites 127,811 requests of 1,808 websites 125,018 requests of 1,714 websites 2,793 requests of 94 websites

Model Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1

AdGraph 95.71% 88.38% 89.73% 89.05% 94.22% 84.57% 83.77% 84.17% 94.20% 84.87% 83.95% 84.41% 95.13% 11.58% 17.46% 13.93%
WTAGRAPH 97.85% 96.75% 92.20% 94.42% 95.68% 88.62% 87.76% 88.19% 95.68% 88.89% 87.92% 88.40% 95.81% 17.98% 26.67% 21.48%

websites. It is worth mentioning that we trained a WTAGRAPH
model using the complete data (instead of the overlapped data)
of the same 7,224 websites and reported its accuracy 97.82%,
precision 98.00%, recall 96.38%, and F1 score 97.18% right
above in Section VII-A. We can see that its performance on
the overlapped dataset drops by 2.14% to 9.38% on different
evaluation metrics. There are two possible reasons for this
performance discrepancy. First, the skewed data (i.e., the
overlapped dataset) were used for training WTAGRAPH. For
example, only 19% of overlapped requests in the Top-10K
dataset are labeled as WTA by filter lists, while 39% of all
requests are labeled as WTA (see Table I). Second, the training
graph built from incomplete requests is not fully representative
of the network traffic in the wild, thus the trained model cannot
achieve the same performance as in the previous subsection.

On the other hand, we found that AdGraph missed the
collection and correspondingly classification of a large volume
of WTA requests. For example, as shown in Table I, among
over 614K requests that are labeled as WTA by filter lists in
our Top-10K dataset, AdGraph missed over 496K (81%) WTA
requests and only collected around 19% of WTA requests.

We further randomly sampled and manually verified 200
disagreements between AdGraph and WTAGRAPH, following
the same verification methodology and criteria as described in
Appendix A. In more details, we first sampled 100 requests
that WTAGRAPH classified as WTA but AdGraph classified
as non-WTA. We found that WTAGRAPH’s classifications on
62 requests are consistent with their labels from filter lists,
while this number is 38 for AdGraph. After manually verifying
these 100 requests, we found that among 91 requests whose
labels can be determined, WTAGRAPH correctly classified 57
of them while AdGraph correctly classified 34 of them. We
further sampled 100 requests that WTAGRAPH classified as
non-WTA but AdGraph classified as WTA. We found that
WTAGRAPH’s classifications on 55 requests are consistent
with their labels from filter lists, while this number is 45
for AdGraph. Similarly, after manually verifying these 100
requests, we found that among 84 requests whose labels can
be determined, WTAGRAPH correctly classified 51 of them
while AdGraph correctly classified 33 of them.

Furthermore, we randomly sampled and manually verified
200 agreements between AdGraph and WTAGRAPH. Specifi-
cally, among 100 requests that are classified as WTA by them,
all are labeled as WTA by filter lists; we verified that 96 of
them are indeed WTA requests while four requests cannot be
determined. Among 100 requests that are classified as non-
WTA by them, only one is labeled as WTA by filter lists; we
verified that 91 of these 100 requests are indeed non-WTA,
while eight requests cannot be determined. Besides, the one
that is labeled as WTA by filter lists is indeed a WTA request.

In summary, we found that WTAGRAPH outperforms Ad-
Graph from three aspects. First, WTAGRAPH classifies the
overlapped requests more accurately than AdGraph. Second,
WTAGRAPH’s classifications on those sampled disagreements
between AdGraph and WTAGRAPH are correct at least 60%
of the time. Third, AdGraph missed the opportunity to collect
and classify a large volume of WTA requests. There are two
possible reasons for WTAGRAPH outperforming AdGraph.
First, our WTAGRAPH model can utilize both explicit features
of requests and implicit features learned from the graph for
detecting WTA requests, while a traditional random forest
model in AdGraph only used the explicit features of requests.
Second, the AHMG built by WTAGRAPH to represent HTTP
network traffic and the relationship between nodes could be
more informative and helpful than the graph built by AdGraph
to represent the context for an individual webpage in terms of
characterizing WTA requests. Note that neither WTAGRAPH
nor AdGraph performs well on the 94 isolated testing websites,
likely related to the heavy skewness of the data as only 2.15%
of 2,793 requests are WTA requests. For WTAGRAPH, another
reason is that the edge or node representation in an isolated
subgraph is purely learned from its own initial features.

C. Evasion Analysis

Recall our ablation analysis results in Section VI-C imply
that WTAGRAPH could be robust against evasions because it
does not heavily rely on certain specific features. We now
evaluate its robustness under different URL-related evasion
techniques in inductive learning settings.

We consider four evasion techniques for evaluation: chang-
ing second-level domain, changing lower-level (i.e., 3rd level,
4th level, etc.) domains, expanding URL length, and replacing
sensitive keywords. In changing second-level domain, we
replace the second-level domain with a randomly generated
string of the same length. In changing lower-level domains,
we replace each of them (if any) with a randomly generated
string of the same length. Because it is possible for motivated
trackers to change second-level or lower-level domains to
evade detection, we evaluate these two evasion techniques. In
expanding URL length, we pad the URL path section at its
end with a randomly generated string so that the length from
the beginning to the end of the URL path section will be 200
characters. Because WTAGRAPH truncates a URL at length
200 for feature extraction, this padding will force WTAGRAPH
to truncate the remaining characters (e.g., in the query string),
thus allowing us to evaluate whether the truncated informa-
tion would help attackers evade our WTAGRAPH. Note that
padding the beginning of a URL (i.e., the domain name) is
similar to the evasion of changing lower-level domains. In
replacing sensitive keywords, we replace the keywords “ad”

11

and “track” in the URL with randomly generated strings of the
same length. We select “ad” and “track” as keywords based on
the fact that they are included in 43.36% rules of EasyList [8].

We used the WTAGRAPH model trained on the Random-7K
graph (described in Section VII-A) for evasion evaluations. For
each labeled WTA URL of a testing webpage, we first adopted
the aforementioned evasion techniques individually to modify
the URL, and extracted new features for the modified URL.
We then tested WTAGRAPH to predict WTA URLs in each
testing webpage. Following the same evasion procedure, we
also tested AdGraph and filter lists for comparison purposes.

Table VI: The success rates of four evasion techniques target-
ing WTAGRAPH, AdGraph, and filter lists.

Evasion Success Rate
Evasion Technique WTAGRAPH AdGraph Filter Lists

Changing Second-level Domain 3.11% 1.03% 57.78%
Changing Lower-level Domains 2.11% 0.67% 9.13%
Expanding URL Length 2.61% 21.84% 2.45%
Replacing Keywords 0.22% 6.74% 12.54%

Table VI summarizes the success rates of four evasion
techniques targeting WTAGRAPH, AdGraph [17], and filter
lists. Overall, WTAGRAPH is robust against all these four
evasion techniques. For example, only 0.22% and 2.61% WTA
URLs successfully evaded WTAGRAPH’s detection by replac-
ing sensitive keywords and expanding URL length, respec-
tively. Comparatively, 21.84% WTA URLs evaded AdGraph’s
detection by expanding URL length. Such a high evasion
success rate on AdGraph is expected because URL length is
reported in AdGraph as one of two content features that “pro-
vided the highest information gain” [17]. Besides, by replacing
keywords, 6.74% WTA URLs evaded AdGraph’s detection.
This is mainly because AdGraph uses the occurrence of WTA-
related keywords as one feature, while our WTAGRAPH does
not explicitly extract this feature. However, we also found that
WTAGRAPH is slightly less robust than AdGraph against the
evasions of changing second-level and lower-level domains.
This is probably because changing domains will lead to graph
structure changes (e.g., adding or deleting nodes and edges),
thus affecting WTAGRAPH’s detection.

We also found that filter lists are the most vulnera-
ble solution. Specifically, 57.78% WTA URLs evaded fil-
ter lists successfully by changing second-level domain. This
is because a large portion of rules detect WTA requests
by matching second-level domain. For example, over one-
third of EasyList [8] rules match second-level domain for
WTA detection. By changing second-level domain, it is
easy to evade those rules such as “||ad1data.comˆ” and
“||adserved.netˆ$third-party”. Besides, filter lists
are also more vulnerable than WTAGRAPH and AdGraph to
changing lower-level domains and replacing keywords.

D. Real-time Performance

To evaluate WTAGRAPH’s performance in real-time, we
implemented an extension-based WTA detection solution by
leveraging the native messaging API of Google Chrome [58]
which enables the communication between our browser ex-

tension and the native WTAGRAPH application. In more de-
tails, we first bundled WTAGRAPH and all its dependencies
into a standalone executable that can be started by Google
Chrome as a native messaging host in a separate process.
We then added a messaging component to our data collection
extension (introduced in Figure 2) so that it can send and
receive messages to and from the WTAGRAPH executable
using the native messaging API. Overall, the real-time WTA
detection on a given webpage is performed in the following
four steps. First, our extension collects HTTP traffic, DOM,
and JavaScript API access while visiting a webpage as we
introduced in Sesction IV-B. Second, it sends the collected
data to the WTAGRAPH executable running (started by Google
Chrome) on the local machine using the native messaging
API. Third, WTAGRAPH extracts features, builds a testing
AHMG from the collected data, and predicts the label of each
collected request. Lastly, WTAGRAPH returns its predictions
to the extension using the native messaging API.

Based on this implementation, we measured WTAGRAPH’s
real-time performance on Alexa Top 1K websites. We selected
the WTAGRAPH model trained on the Random-5K graph
(described in Section VII-A) for real-time evaluation. This
model ensures that among the Top 1K websites, half of them
have been seen in the Random-5K training graph (i.e., a
transductive learning setting), while the other half of them have
never been seen in training and can be tested in the inductive
learning setting. Specifically, we measured: (1) how much
overhead is introduced by WTAGRAPH comparing to a plain
Google Chrome browser? (2) how long does WTAGRAPH take
to complete the prediction for a webpage? and, (3) how well
does WTAGRAPH predict requests?

From Feb. 23rd to Feb. 28th in 2021, we visited the home-
pages of the Top 1K websites 10 times using a Google Chrome
browser with our WTAGRAPH integrated and a plain Google
Chrome browser, respectively, for measuring the overhead.
Appendix C details the hardware and software configurations
for experiments in this subsection. For each visit of a home-
page, we recorded the page load time by measuring the time
difference between DOM’s navigationStart and loadEventEnd
events in each browser, and recorded the overall execution
time of WTAGRAPH in our extension by measuring the time
difference between sending the first message (i.e., sending
the collected data) and receiving prediction results as the last
message. We also saved the prediction results for analysis.

From the perspective of overhead, we found that the page
load time in the plain Google Chrome browser is 5,903 ms on
average, while that in the Google Chrome browser with WTA-
GRAPH integrated is 6,419 ms on average. In other words, our
implementation introduced a 516 ms page load overhead on
average. This overhead is mainly caused by the JavaScript API
instrumentation and data collection (e.g., polling JavaScript
call stack for tracing API access) in our extension, and can be
reduced with an improved implementation.

From the perspective of overall execution time, we found
that it only takes 266 ms per webpage on average for WTA-
GRAPH to complete the predictions of the requests on a

12

webpage. The message exchange between WTAGRAPH and
the extension takes 100 ms per webpage on average, and
WTAGRAPH spends the rest 166 ms to extract features, build
the graph, and predict the labels of all requests on a webpage.

From the perspective of prediction performance, we col-
lected 2,002,026 requests in total from all the 10 crawls of the
Top 1K homepages, and summarized WTAGRAPH’s prediction
performance in Table VIII of Appendix E. Overall, we found
that WTAGRAPH can predict all collected requests with an
accuracy 92.80%, precision 94.29%, recall 91.29%, and F1

score 92.77%. We observed a performance decrease comparing
to that in Sections VI-A and VII-A. This is mainly because the
WTAGRAPH model used for real-time prediction was trained
based on the data collected seven months ago. However, this
problem can be addressed by periodically retraining WTA-
GRAPH. The real prediction performance that WTAGRAPH can
achieve in inductive learning settings is what we presented
in Section VII-A, and that is the prediction performance a
retrained model can achieve in real-time.

In summary, WTAGRAPH can be integrated well with a
browser to achieve competitive performance in real-time with
a small overhead. It would have less overhead if one further
improves the integration implementation.

VIII. DISCUSSION

Suggestions for Better Use of WTAGRAPH. As shown in
Section VI-B, WTAGRAPH is able to identify new WTA
requests that are missed by filter lists and non-WTA re-
quests that are mistakenly blocked by filter lists. Therefore,
WTAGRAPH can be used (e.g., in a web privacy crawler) to
refine existing filter lists by augmenting new rules to detect
new WTA requests and improving existing rules to make
fewer mistakes. Besides an extension-based deployment (as
we evaluated in Section VII-D), WTAGRAPH can also be
potentially deployed as a browser component to support the
built-in WTA detection of a browser, which is similar to
PageGraph [23] in the Brave browser. However, since a testing
AHMG needs to be constructed for multiple requests of each
webpage visit to achieve good detection performance, it is not
wise to immediately block the requests in a current webpage
visit. Instead, the detection results can be used to block the
same requests in the follow-up webpage visits. Overall, it is
better to use WTAGRAPH in a crawler for refining filter lists.
Limitations and Potential Future Work. Though the evalu-
ation results in Section VI and Section VII have shown that
WTAGRAPH is effective in WTA detection, we acknowledge
that it has several limitations. For example, it has a false
negative rate and false positive rate on the Top-10K dataset at
3.75% and 1.03%, respectively; it has a relatively low accuracy
in detecting WTA requests sent to CDN servers (Appendix A).
In addition, similar to that in AdGraph [17], we used the
outputs from the filter lists as the ground truth labels in the
training process, but filter lists themselves will produce false
results as shown in our analysis and in [17]; better ground
truth labels (e.g., verified by privacy researchers or engineers)
could be helpful to WTAGRAPH, AdGraph, and related work.

To address WTAGRAPH’s limitations and further improve
its performance, we identified the following potential future
work. First, new features for both nodes and edges might help
reduce misclassifications of WTAGRAPH. For example, certain
DOM features (e.g., tag attributes and JavaScript existence)
could help WTAGRAPH correctly detect more sub_frame
WTA requests. One can design more features specific to
each type of requests to better characterize WTA requests.
Second, a fine-grained aggregation strategy could help improve
WTAGRAPH’s performance on detecting WTA requests sent
to CDN servers. For example, by only aggregating neighbor
edges with the same request type, WTAGRAPH might be able
to learn more relevant features from neighbors. Third, fine-
tuning our WTA-GNN model could help improve its per-
formance. For example, sub-sampling and negative-sampling
techniques could be applied in the training process to poten-
tially reduce the false positives and negatives. Fourth, some
techniques from advanced or alternative GNN models (e.g.,
the attention mechanism from GAT [20] and the local neigh-
borhood sampling method from GraphSage [19]) could be
explored to help improve WTAGRAPH’s performance. Mean-
while, while existing knowledge graph (KG) based formula-
tion and learning algorithms (such as [59]–[61]) are not easily
applicable to our WTA detection problem due to the multi-
graph definition and edge representation differences, some
KG-based techniques may be helpful for future exploration.

In addition, manually-curated filter lists perform poorly for
detecting WTA requests on non-English websites [62] because
they usually target English websites. Hence, an evaluation of
WTAGRAPH on non-English websites may provide informa-
tion regarding if WTAGRAPH could help address this problem.

IX. CONCLUSION

In this paper, we proposed WTAGRAPH, a web tracking
and advertising detection framework based on Graph Neural
Networks. We first formulated WTA detection as a task of
edge representation learning and classification in AHMG. We
then designed and implemented four components in WTA-
GRAPH (code available at [63]) so that it can perform edge
representation learning and WTA detection. The evaluation
results showed that WTAGRAPH can effectively detect WTA
requests in both transductive and inductive learning settings.
For example, it detects WTA requests with 97.90% accuracy,
98.38% precision, 96.25% recall, and 97.30% F1 score on the
Top-10K websites in the transductive learning setting; it de-
tects WTA requests with 97.82% accuracy, 98.00% precision,
96.38% recall, and 97.18% F1 score in the inductive learning
setting. Manual verification results indicated that WTAGRAPH
can detect new WTA requests that are missed by filter lists and
recognize non-WTA requests that are mistakenly labeled by
filter lists. Our ablation analysis, evasion evaluation, and real-
time evaluation show that WTAGRAPH can have a competitive
performance with flexible deployment options in practice.

ACKNOWLEDGMENTS
We thank reviewers and shepherds for valuable suggestions.

This research was supported by the NSF grant OIA-1936968.

13

REFERENCES

[1] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in Proc. of the ACM SIGSAC conference
on computer and communications security, 2016.

[2] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet jones and
the raiders of the lost trackers: An archaeological study of web tracking
from 1996 to 2016,” in Proc. of the USENIX Security Symposium, 2016.

[3] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas,
“Adnostic: Privacy preserving targeted advertising,” in Proc. of the
Network and Distributed System Security Symposium (NDSS), 2010.

[4] J. R. Mayer and J. C. Mitchell, “Third-Party Web Tracking: Policy and
Technology,” in Proc. of the IEEE Symposium on Security and Privacy,
2012.

[5] Z. Yang and C. Yue, “A comparative measurement study of web tracking
on mobile and desktop environments,” in Proc. of the Privacy Enhancing
Technologies Symposium (PETS), 2020.

[6] “Adblock Plus,” 2021. https://adblockplus.org/.
[7] “uBlock Origin,” 2021. https://github.com/gorhill/uBlock.
[8] “EasyList,” 2021. https://easylist.to/easylist/easylist.txt.
[9] “EasyPrivacy,” 2021. https://easylist.to/easylist/easyprivacy.txt.

[10] P. Snyder, A. Vastel, and B. Livshits, “Who filters the filters: Understand-
ing the growth, usefulness and efficiency of crowdsourced ad blocking,”
in Proc. of the ACM on Measurement and Analysis of Computing
Systems, 2020.

[11] M. Alrizah, S. Zhu, X. Xing, and G. Wang, “Errors, misunderstand-
ings, and attacks: Analyzing the crowdsourcing process of ad-blocking
systems,” in Proc. of the Internet Measurement Conference, 2019.

[12] D. Gugelmann, M. Happe, B. Ager, and V. Lenders, “An automated
approach for complementing ad blockers’ blacklists,” in Proc. of the
Privacy Enhancing Technologies Symposium (PETS), 2015.

[13] A. Shuba, A. Markopoulou, and Z. Shafiq, “Nomoads: Effective and ef-
ficient cross-app mobile ad-blocking,” in Proc. of the Privacy Enhancing
Technologies Symposium (PETS), 2018.

[14] M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and B. Krishna-
murthy, “Towards seamless tracking-free web: Improved detection of
trackers via one-class learning,” in Proc. of the Privacy Enhancing
Technologies Symposium (PETS), 2017.

[15] Q. Wu, Q. Liu, Y. Zhang, P. Liu, and G. Wen, “A machine learning
approach for detecting third-party trackers on the web,” in Proc. of the
European Symposium on Research in Computer Security, 2016.

[16] A. J. Kaizer and M. Gupta, “Towards automatic identification of
javascript-oriented machine-based tracking,” in Proc. of the ACM on
International Workshop on Security And Privacy Analytics, 2016.

[17] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq,
“Adgraph: A graph-based approach to ad and tracker blocking,” in Proc.
of the IEEE Symposium on Security and Privacy, 2020.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. of the International Conference on
Learning Representations, 2017.

[19] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. of the Advances in Neural Information
Processing Systems, 2017.

[20] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” in Proc. of the International
Conference on Learning Representations, 2018.

[21] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?,” in Proc. of the International Conference on Learning
Representations, 2018.

[22] S. Bhagavatula, C. Dunn, C. Kanich, M. Gupta, and B. Ziebart, “Lever-
aging machine learning to improve unwanted resource filtering,” in Proc.
of the Artificial Intelligent and Security Workshop, 2014.

[23] “PageGraph in Brave Browser,” 2021. https://github.com/brave/brave-
browser/wiki/PageGraph.

[24] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. of the
International Conference on Machine Learning, 2017.

[25] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proc. of the ACM International Conference
on Knowledge Discovery & Data Mining, 2019.

[26] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
1995.

[27] L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic
segmentation with superpoint graphs,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[28] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions On Graphics, 2019.

[29] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. of the AAAI
conference on artificial intelligence, 2018.

[30] H. Wang, T. Xu, Q. Liu, D. Lian, E. Chen, D. Du, H. Wu, and W. Su,
“Mcne: An end-to-end framework for learning multiple conditional
network representations of social network,” in Proc. of the ACM In-
ternational Conference on Knowledge Discovery & Data Mining, 2019.

[31] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural
networks for social recommendation,” in Proc. of the World Wide Web
Conference, 2019.

[32] T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, and J. Huang, “Ru-
mor detection on social media with bi-directional graph convolutional
networks,” in Proc. of the AAAI Conference on Artificial Intelligence,
2020.

[33] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Proc. of the Advances in Neural
Information Processing Systems, 2015.

[34] Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li, X. Luo,
K. Chen, H. Jiang, et al., “Pushing the boundaries of molecular represen-
tation for drug discovery with the graph attention mechanism,” Journal
of Medicinal Chemistry, 2019.

[35] “Fully Qualified Domain Name,” 2021. https://en.wikipedia.org/wiki/
Fully qualified domain name.

[36] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang, “Knowing your enemy:
understanding and detecting malicious web advertising,” in Proc. of the
ACM conference on Computer and communications security, 2012.

[37] B. Li, P. Vadrevu, K. H. Lee, R. Perdisci, J. Liu, B. Rahbarinia, K. Li,
and M. Antonakakis, “Jsgraph: Enabling reconstruction of web attacks
via efficient tracking of live in-browser javascript executions.,” in Proc.
of the Network and Distributed System Security Symposium (NDSS),
2018.

[38] J. Jueckstock and A. Kapravelos, “Visiblev8: In-browser monitoring of
javascript in the wild,” in Proc. of the Internet Measurement Conference,
2019.

[39] “Selenium Web Driver,” 2021. http://www.seleniumhq.org/.
[40] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Explor-

ing the limits of language modeling,” arXiv preprint arXiv:1602.02410,
2016.

[41] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and
T. Robinson, “One billion word benchmark for measuring progress in
statistical language modeling,” in Proc. of the Annual Conference of the
International Speech Communication Association, 2014.

[42] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints,”
in Proc. of the IEEE Symposium on Security and Privacy, 2016.

[43] “chrome.webRequest API,” 2021. https://developer.chrome.com/docs/
extensions/reference/webRequest/.

[44] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. of the ACM International Conference on Knowledge
Discovery & Data Mining, 2016.

[45] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proc. of the ACM International
Conference on Knowledge Discovery & Data Mining, 2019.

[46] “Deep Graph Library,” 2021. https://github.com/dmlc/dgl.
[47] “Instrumented Chromium Broswer in AdGraph,” 2021. https://

github.com/uiowa-irl/AdGraph.
[48] “Anti-Adblock Killer ,” 2021. https://github.com/reek/anti-adblock-

killer.
[49] “Warning Removal List,” 2021. https://easylist-

downloads.adblockplus.org/antiadblockfilters.txt.
[50] “Blockzilla,” 2021. https://zpacman.github.io/Blockzilla/.
[51] “Peter Lowes’s List,” 2021. https://pgl.yoyo.org/adservers/.
[52] “Fanboy Annoyances List,” 2021. https://easylist-

downloads.adblockplus.org/fanboy-annoyance.txt.
[53] “Request Types Defined in Chrome,” 2021. https:

//developer.chrome.com/extensions/webRequest#type-ResourceType.

14

[54] “Ad Network Uses DGA Algorithm to Bypass Ad Blockers and Deploy
In-Browser Miners,” 2021. https://www.bleepingcomputer.com/news/
security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-
deploy-in-browser-miners/.

[55] H. Le, F. Fallace, and P. Barlet-Ros, “Towards accurate detection of
obfuscated web tracking,” in Proc. of the IEEE International Workshop
on Measurement and Networking, 2017.

[56] S. Liu, I. Ounis, C. Macdonald, and Z. Meng, “A heterogeneous graph
neural model for cold-start recommendation,” in Proc. of the ACM SIGIR
Conference on Research and Development in Information Retrieval,
2020.

[57] B. Hao, J. Zhang, H. Yin, C. Li, and H. Chen, “Pre-training graph neural
networks for cold-start users and items representation,” in Proc. of the
ACM International Conference on Web Search and Data Mining, 2021.

[58] “Native Messaging,” 2021. https://developer.chrome.com/docs/apps/
nativeMessaging/.

[59] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” Proc. of
the Advances in Neural Information Processing Systems, 2013.

[60] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Proc. of the AAAI Conference on
Artificial Intelligence, 2014.

[61] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion,” in Proc. of the AAAI
conference on artificial intelligence, 2015.

[62] A. Sjösten, P. Snyder, A. Pastor, P. Papadopoulos, and B. Livshits, “Filter
list generation for underserved regions,” in Proc. of The Web Conference,
2020.

[63] “WtaGraph source code and dataset,” 2021. https://github.com/jun521ju/
IEEE SP 2022 WtaGraph.

[64] “DNS Prefetching in Chromium,” 2021. https://www.chromium.org/
developers/design-documents/dns-prefetching.

APPENDIX

A. Manual Verification

Procedure and Criteria. To get a better understanding of the
disagreements between WTAGRAPH and filter lists on the Top-
10K dataset in the transductive learning setting (Section VI-A),
we followed the criteria presented in [17] to manually verify
a sampled set of false positives (i.e., WTAGRAPH classified
them as WTA but filter lists labeled them as non-WTA) and
false negatives (i.e., WTAGRAPH classified them as non-WTA
but filter lists labeled them as WTA). In more details, we first
randomly sampled 100 false positives and 100 false negatives
of each request type in Table III. If there are less than 100
false positives or false negatives of a request type, we selected
all available ones. Then, we manually verified these sampled
requests and assigned each of them to one of four labels: (1)
WTA, i.e., the request is confirmed to be related to tracking
and/or advertising, (2) non-WTA, i.e., the request is confirmed
to be not related to tracking or advertising, (3) mixed, i.e., the
request (only used for script resources as in [17]) can be both
WTA and non-WTA related, (4) undecidable, i.e., the request’s
label cannot be determined during the manual verification.
Similarly, to verify and confirm the agreements (i.e., true
positives and true negatives) between WTAGRAPH and filter
lists, we conducted another set of manual verifications by
following the same sampling procedure and labeling criteria.

In more details, the criteria for determining the label of a re-
quest during our manual verification are as follows. As in [17],
an image request will be labeled as WTA if the image is a
tracking pixel (e.g., 1∗1 sized image) or the image has content
related to advertising (e.g., having keywords such as sponsored

and price); a script request will be labeled as WTA if the
JavaScript code is used for device fingerprinting, cookie or
beacon transmission, ad-related DOM modification, or WTA
service communication. We further propose the following
criteria for the rest request types that were not sampled in [17].
An xmlhttprequest, ping, font, stylesheet, or
csp_report request will be labeled as WTA if its request
body or header carries obvious identifier data (such as user ID
and device ID in a cookie or query section). A sub_frame,
main_frame, or media request will be labeled as WTA
if it has content related to advertising (e.g., an advertisement
image or video). In addition, a sub_frame or main_frame
request will also be labeled as WTA if the requested frame
embeds with WTA-related JavaScript. An other request is
usually of one of the above request types; hence it will be
labeled by applying the same criteria of the aforementioned
request types. For each specific request, it will be labeled as
non-WTA if none of the above criteria of its request type
applies to it, or will be labeled as undecidable if it cannot
be determined during manual verification (e.g., the requested
resource is not available at the time of verification). Note
that a script request could also be labeled as mixed if its
JavaScript code serves for both website functional and WTA
purposes [17].
Verification on Disagreements. Following the above criteria,
in total we randomly sampled and manually verified 846 false
positives (accounting for 8.67% of all cases) and 941 false
negatives (accounting for 4.09% of all cases). Table VII(a) de-
tails our manual verification results of these sampled disagree-
ments between WTAGRAPH and filter lists of each request
type. Overall, WTAGRAPH’s classification is indeed correct
for 60.36% and 37.83% of the sampled false negatives and
false positives, respectively. This result implies that the actual
performance of WTAGRAPH could be higher than what was
reported in Table III (Section VI-A).

Among 846 sampled false positives, we found that WTA-
GRAPH is able to identify WTA requests that are missed by
filter lists for types of image, script, xmlhttprequest,
sub_frame, ping, and media. For example, among the
100 ping and 100 media requests that are labeled as non-
WTA by filter lists, 69 and 64 of them are verified as WTA-
related requests, respectively.

Meanwhile, we found that there are 444 requests that
are verified as non-WTA but classified incorrectly as WTA
by WTAGRAPH. There are two potential reasons for WTA-
GRAPH’s misclassification. First, WTAGRAPH’s neighborhood
aggregation in the learning process might not be sufficiently
fine-grained. For example, many of those requests (such as
stylesheet, font, and script requests) were sent to
CDN servers, which could host both WTA and non-WTA
resources; as a consequence, nodes that represent CDN do-
mains in the AHMG would have both WTA and non-WTA
edges, and hence resulting in the ambiguous or misleading
aggregation from neighbor edges. Second, WTAGRAPH was
likely misled by some URL characteristics. For example, many
xmlhttprequest requests carried multiple parameters in

15

Table VII: Manual verification results of sampled disagreements and agreements between WTAGRAPH and filter lists.
(a) Verification results of sampled disagreements (i.e., false positives and false negatives).

Request Type False Positives False Negatives
Samples WTA Non-WTA Mixed Undecidable # Samples WTA Non-WTA Mixed Undecidable

image 100 52 37 - 11 100 31 53 - 16
script 100 41 48 4 7 100 47 41 3 9
xmlhttprequest 100 37 49 - 14 100 57 29 - 14
other 50 10 36 - 4 100 7 91 - 2
stylesheet 100 0 94 - 6 100 0 94 - 6
sub frame 100 44 46 - 10 100 65 32 - 3
font 28 0 26 - 2 100 0 100 - 0
main frame 69 3 62 - 4 100 0 100 - 0
ping 100 69 12 - 19 100 84 8 - 8
media 92 64 27 - 1 32 19 11 - 2
csp report 7 0 7 - 0 9 0 9 - 0
object 0 0 0 - 0 0 0 0 - 0
Total 846 320 444 4 78 941 310 568 3 60

(b) Verification results of sampled agreements (i.e., true positives and true negatives).

Request Type True Positives True Negatives
Samples WTA Non-WTA Mixed Undecidable # Samples WTA Non-WTA Mixed Undecidable

image 100 96 0 - 4 100 1 97 - 2
script 100 98 0 0 2 100 0 90 0 10
xmlhttprequest 100 92 0 - 8 100 4 88 - 8
other 100 100 0 - 0 100 0 96 - 4
stylesheet 100 100 0 - 0 100 0 93 - 7
sub frame 100 99 1 - 0 100 5 94 - 1
font 100 100 0 - 0 100 0 100 - 0
main frame 61 14 37 - 10 100 0 100 - 0
ping 100 99 0 - 1 100 31 65 - 4
media 100 93 0 - 7 100 0 94 - 6
csp report 79 7 31 - 41 100 0 100 - 0
object 0 0 0 - 0 39 0 39 - 0
Total 1,040 898 69 0 73 1,139 41 1,056 0 42

the URL query string for measuring website performance;
such a URL characteristic is similar to that of WTA-related
xmlhttprequest requests which usually carry lots of
WTA-related data in the URL query string.

We further sampled 55 (five from each type) out of these 444
requests to evaluate the impact of blocking them. Specifically,
for each webpage that issued a sampled request, we visited
it five times under two conditions (i.e., with and without the
sampled request being blocked). We found that blocking the 55
requests leads to (1) no perceptible difference on 46 webpages,
(2) a blank element (e.g., a missing image of a div) on five
webpages, and (3) complete breakage on four webpages. For
example, blocking https://scout.salesloft.com/
i on newrelic.com does not incur any percep-
tible difference; blocking https://www.google.com/
maps/embed?pb=!... on mobinsb.com results in the
missing of an embedded Google Map widget on the
webpage; blocking https://www.zergnet.com/ajax/
load_results... on zergnet.com breaks the webpage.
The blank elements on five webpages are due to the blocking
of two image requests, one xmlhttprequest request,
one sub_frame request, and one media request. The
breakage on four webpages is due to the blocking of three
main_frame requests and one xmlhttprequest request.

Among 941 sampled false negatives, we verified that WTA-
GRAPH’s classification is correct over 90% of the time for
stylesheet, main_frame, other, and font requests.
That is, filter lists mistakenly labeled those requests as WTA.
We looked into why filter lists would make such mistakes,
and found that some coarse-grained rules in filter lists would

aggressively or mistakenly block some resources. For example,
Peter Lowes’s List [51] aggressively blocks any request to
criteo.com. As a consequence, when one visits criteo.com as
a first-party website, all requests to criteo.com, including the
main_frame request, will be blocked by this filter list. We
also observed that among the sampled xmlhttprequest,
ping, and sub_frame requests, WTAGRAPH tends to mis-
takenly classify verified WTA requests as non-WTA. Our
investigation results indicate that WTAGRAPH missed the
opportunity to utilize some important though covert features
for classification. For example, while many sub_frame re-
sources embed with WTA JavaScript code, the current version
of WTAGRAPH did not use JavaScript code features for the
corresponding sub_frame request classification.
Verification on Agreements. Table VII(b) details manual
verification results of sampled 1,040 true positives and 1,139
true negatives, which are the agreements between WTAGRAPH
and filter lists. Overall, the majority (93.23%) of agreements
between them are verified as correct.

Among 1,040 sampled true positives, we verified that
86.35% (i.e., 898) of these agreements between WTAGRAPH
and filter lists are correct as they are indeed WTA re-
quests. Specifically, on the top five dominant request types
(i.e., image, script, xmlhttprequest, other, and
stylesheet), WTAGRAPH’s classifications are completely
correct and consistent with filter lists. However, we observed
that the agreements on 37 main_frame, 31 csp_report,
and 1 sub_frame requests are questionable according to
our labeling criteria. For example, EasyPrivacy [9] labeled
these 31 csp_report requests as WTA because there were

16

sent to report-uri.io and report-uri.com; though WTAGRAPH’s
classification is consistent with EasyPrivacy [9] on these
requests, it is questionable to label and predict every request
sent to a filter-lists-included domain as a WTA request because
of the imperfection of filter lists (recall the aforementioned
example of visiting criteo.com as a first-party website).

Among 1,139 sampled true negatives, we verified that
92.71% (i.e., 1,056) of these agreements between WTAGRAPH
and filter lists are correct as they are indeed non-WTA re-
quests. However, our manual verification also shows that 41
agreed non-WTA requests are indeed WTA requests. That is,
both WTAGRAPH and filter lists missed the opportunity to
detect these WTA requests.
Summary. These manual verification results have the fol-
lowing major implications. From the perspective of WTA-
GRAPH, first, the sampled false positives and false negatives
indicate that WTAGRAPH could outperform traditional filter
lists in terms of detecting new WTA requests and recog-
nizing non-WTA requests that were mistakenly labeled by
filter lists. Second, its performance could be improved by
refining some design of its components. For example, a fine-
grained same-type aggregation strategy (i.e., only aggregating
from neighbor edges with the same request type) would be
better for learning representations of those requests sent to
CDN servers; by designing more features for ping requests
and incorporating JavaScript code features for sub_frame
requests, WTAGRAPH may potentially classify those requests
more accurately. We leave these improvements as future work.
Third, because of the imperfection and incompleteness of
filter lists (e.g., missing WTA requests and over-blocking
non-WTA requests), the correspondingly trained WTAGRAPH
could make mistakes as a filter list does as indicated by some
sampled true positives and true negatives. We believe that fine-
grained filter lists could help address this problem and improve
WTAGRAPH’s performance.

From the perspective of filter lists, they inevitably lag behind
in the arms race of WTA detection because of the temporal gap
between a new WTA request being created on the web and a
manually-curated rule being updated to filter lists. Besides,
some filter lists should be refined so that they would not
aggressively or mistakenly block non-WTA requests especially
for first-party websites.

B. Dataset Discrepancy Between WTAGRAPH and AdGraph

We investigated the discrepancy (described in Section V)
between data collected by WTAGRAPH and by AdGraph.
The results of the manual inspection on 20 sampled web-
sites indicate that there are two reasons for the request
miss by WTAGRAPH. First, AdGraph considers all URLs
appearing in the href attribute of link HTML tags as
HTTP requests. However, the fact is that a browser will not
issue HTTP requests for some of those URLs in the href
attribute. For example, <link rel="dns-prefetch"
href="//example.com"> will not trigger Chromium
to issue an HTTP request to example.com, because
“Chromium’s implementation of DNS prefetching does not

use the browser’s network stack at all” [64]. Second, AdGraph
considers all values in the src attribute of img HTML tags
as URLs. However, the src attribute accepts the data URI
(e.g., “data:image/gif;base64,...”) of an image, which will not
issue an HTTP request. In summary, WTAGRAPH collects data
correctly as what it missed but extracted by AdGraph are not
HTTP requests in practice. This is confirmed by the complete
match between requests collected by WTAGRAPH and requests
displayed on the Network tab of the browser’s DevTools.

As for the reason for AdGraph missing a large num-
ber of requests that are collected by WTAGRAPH and dis-
played on the browser’s Network tab, we conjecture that
AdGraph’s Chromium browser instrumentation might not be
complete. For example, we found that ping, stylesheet
and other types of requests were never recorded by Ad-
Graph’s Chromium browser.

C. Details on the Experimental Setup

Hyperparameters. For all the WTAGRAPH models and vari-
ants presented in Sections VI and VII and three baseline
models presented in Section VI-A, we trained them for 1000
epochs (enough for stabilizing their performance) with a learn-
ing rate of 0.005. We used ReLU as the non-linear activation
function and Adam optimizer as the optimization algorithm.
All these models have two layers, where the dimension of the
hidden layer is 32 and that of the output layer is 2. For the ran-
dom forest model of AdGraph presented in Section VII-B, we
trained it in Weka using the same configuration as described
in [17]. Specifically, we configured the random forest with 100
decision trees. Each decision tree is trained using int(logM
+ 1) features, where M is the total number of features.

We conducted experiments on evaluating the hyperparam-
eter sensitivity of our WTAGRAPH model (Table II) in the
transductive learning setting. Specifically, we set different
learning rates (i.e., 0.001, 0.005, and 0.0025), training epochs
(i.e., 1,000 and 2,000), and dimensions of the hidden layer
(i.e., 32, 64, and 128). Overall, we found that our model is not
sensitive to these hyperparameters. For example, the accuracy
is increased by 0.25% after changing the learning rate from
0.005 to 0.001, and is increased by 0.11% after changing the
dimension of the hidden layer from 32 to 64. We finalized the
aforementioned hyperparameters by considering the trade-off
between training efficiency and performance.
Hardware and Software. For the real-time evaluation in
Section VII-D, we ran experiments on a typical desktop
machine with 8 Intel i7-3770 CPU cores and 16GB of RAM.
This machine is installed with 64-bit Ubuntu 18.04 and a
Google Chrome browser (version 88.0.4324.96).

For training and testing all the models (except for the
real-time evaluation in Section VII-D), we ran experiments
on a server with 40 Intel Xeon CPU cores (E5-2698 v4 @
2.20GHz), 4 Nvidia Tesla V100 GPUs, and 256GB of RAM.
Using this machine, it takes around 0.8 second per epoch and
around 15 minutes in total to complete the training process
of WTAGRAPH. Besides, WTAGRAPH is implemented with
Python 3.6.9, Pytorch 1.5.0, and DGL 0.5.3.

17

0.00 0.05 0.10 0.15 0.20 0.25 0.30

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e

P
os

it
iv

e
R

at
e

Threshold: 0.5

Threshold: 0.75

Receiver Operating Characteristic

AUC = 0.9901

(a) WTAGRAPH: transductive

0.00 0.05 0.10 0.15 0.20 0.25 0.30

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Threshold: 0.5

Threshold: 0.75

Receiver Operating Characteristic

AUC = 0.9890

(b) WTAGRAPH: inductive

0.00 0.05 0.10 0.15 0.20 0.25 0.30

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Threshold: 0.5

Threshold: 0.4

Receiver Operating Characteristic

AUC of WtaGraph: 0.9499

AUC of AdGraph: 0.9631

(c) WTAGRAPH and AdGraph: inductive

Fig. 5: ROC curves and AUC values in transductive and inductive learning settings.

D. ROC and AUC Analysis

In both Section VI and Section VII, we reported WTA-
GRAPH’s performance with a default (and commonly cho-
sen) probability threshold of 0.5 in different transductive and
inductive learning settings. That is, WTAGRAPH predicts a
request as WTA if the probability for this request to be WTA is
greater than 50%. Using this default probability threshold, the
false positive rate of WTAGRAPH in the transductive learning
setting is 1.03% as reported in Table III. We now analyze the
impact of different probability thresholds in both transductive
and inductive learning settings. Specifically, we first set the
threshold from 0 to 1 with a step of 0.05 and derive each
model’s performance using every threshold. We then derive
ROC (Receiver Operating Characteristic) curves and AUC
(Area under the ROC Curve) values to further interpret the
performance of those models.

We derived the ROC curves for four models (i.e., WTA-
GRAPH and three baseline models) presented in Section VI-A
in transductive learning settings. We found that the AUCs for
the link prediction GNN, MLP, advanced link prediction GNN,
and WTAGRAPH are 0.9763, 0.9897, 0.9900, and 0.9901,
respectively. Similarly, in inductive learning settings, the
AUCs for the WTAGRAPH models (Section VII-A) trained on
the Random-1K, Random-3K, Random-5K, and Random-7K
graphs are 0.9558, 0.9796, 0.9851, and 0.9890, respectively.

Figure 5(a) plots the ROC curve of WTAGRAPH in the
transductive learning setting, while Figure 5(b) plots the ROC
curve of the WTAGRAPH model trained on the Random-7K
graph in the inductive learning setting. Note that because the
ROC curves align very close to each other, we did not plot the
curves for other models in Figure 5(a) and 5(b). We observed
that by using the threshold of 0.5, WTAGRAPH has a TPR
of 96.25% and FPR of 1.03% in the transductive learning
setting, while it has a TPR of 96.38% and FPR of 1.25% in the
inductive learning setting. By increasing the threshold to 0.75,
WTAGRAPH has a TPR of 94.23% and FPR of 0.44% in the
transductive learning setting, while it has a TPR of 94.82% and
FPR of 0.56% in the inductive learning setting. This implies
that one can increase the threshold value to achieve a lower
FPR along with a relatively good TPR in practice.

Figure 5(c) presents the ROC curves of WTAGRAPH and
AdGraph in the inductive learning setting evaluated on the

overlapped dataset (Sectin VII-B). While the AUC of AdGraph
is slightly higher than that of WTAGRAPH, we should note
that there are always some caveats when interpreting AUCs.
Especially, we should care more about the left portions of
the curves (which correspond to higher threshold values) if
avoiding a high false positive rate is critical in practice as in
WTA detection. We found that at each threshold starting from
0.4, WTAGRAPH always achieves both a higher TPR and a
lower FPR than AdGraph. For example, at the threshold of
0.4, WTAGRAPH has a TPR of 88.50% and FPR of 3.14%,
while AdGraph has a TPR of 88.01% and FPR of 5.08%; at the
threshold of 0.5, WTAGRAPH has a TPR of 87.76% and FPR
of 2.54%, while AdGraph has a TPR of 83.77% and FPR of
3.43%. In WTA detection, the probability or confidence level
is often expected to be high (e.g., 50% or even above) to avoid
misclassifying and blocking requests.

E. Detailed Real-time Prediction Performance

In Section VII-D, we evaluated WTAGRAPH’s performance
in real-time. From the perspective of prediction performance,
Table VIII summarizes the detailed results.

Table VIII: The real-time prediction performance of WTA-
GRAPH. The last two rows provide a detailed view in two
cases: 500 websites that have been seen during training and
500 websites that have never been seen during training.

Sites # Requests Acc. Prec. Recall F1

Overall 1,000 2,002,026 92.80% 94.29% 91.29% 92.77%
Case: Seen 500 998,534 93.68% 95.56% 91.96% 93.73%
Case: Unseen 500 1,003,492 91.92% 93.02% 90.59% 91.79%

We noted in Section VII-D that this prediction performance
is lower than what was reported in Section VI-A and Sec-
tion VII-A mainly because the WTAGRAPH model used for
real-time prediction was trained based on the data collected
seven months ago. We compared the requests collected on
the Top 1K websites in our Top-10K dataset and the requests
collected in real-time from one crawl, and found that 85.65%
requests and 25.10% FQDNs are different between these two
datasets collected seven months apart. In other words, due to
the webpage and network traffic pattern changes in the past
seven months, the WTAGRAPH model used in this experiment
mainly for runtime performance evaluation is relatively obso-
lete to achieve strong prediction performance.

18

